Slow Anion Channels in Arabidopsis Wild-Type and abil and abi2 Mutants
نویسندگان
چکیده
Abscisic acid (ABA) regulates vital physiological responses, and a number of events in the ABA signaling cascade remain to be identified. To allow quantitative analysis of genetic signaling mutants, patch-clamp experiments were developed and performed with the previously inaccessible Arabidopsis guard cells from the wild type and ABA-insensitive (abi) mutants. Slow anion channels have been proposed to play a rate-limiting role in ABA-induced stomatal closing. We now directly demonstrate that ABA strongly activates slow anion channels in wild-type guard cells. Furthermore, ABA-induced anion channel activation and stomatal closing were suppressed by protein phosphatase inhibitors. In abil-7 and abi2-7 mutant guard cells, ABA activation of slow anion channels and ABA-induced stomatal closing were abolished. These impairments in ABA signaling were partially rescued by kinase inhibitors in abil but not in abi2 guard cells. These data provide cell biological evidence that the abi2 locus disrupts early ABA signaling, that abil and abi2 affect ABA signaling at different steps in the cascade, and that protein kinases act as negative regulators of ABA signaling in Arabidopsis. New models for ABA signaling pathways and roles for abil, abi2, and protein kinases and phosphatases are discussed.
منابع مشابه
Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells.
Elevations in cytoplasmic calcium ([Ca(2)+](cyt)) are an important component of early abscisic acid (ABA) signal transduction. To determine whether defined mutations in ABA signal transduction affect [Ca(2)+](cyt) signaling, the Ca(2)+-sensitive fluorescent dye fura 2 was loaded into the cytoplasm of Arabidopsis guard cells. Oscillations in [Ca(2)+](cyt) could be induced when the external calci...
متن کاملThe coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production.
Methyl jasmonate (MeJA) elicits stomatal closing similar to abscisic acid (ABA), but whether the two compounds use similar or different signaling mechanisms in guard cells remains to be clarified. We investigated the effects of MeJA and ABA on second messenger production and ion channel activation in guard cells of wild-type Arabidopsis (Arabidopsis thaliana) and MeJA-insensitive coronatine-ins...
متن کاملRole of the AtClC genes in regulation of root elongation in Arabidopsis
The protein family of anion channel (ClC) constitute a family of transmembrane trnsporters that either function as anion channel or as H+/anion exchanger. The expression of three genes of AtClCa, AtClCb and AtClCd in the model plant Arabidopsis thaliana were silenced by a T-DNA insertion . When the pH of the medium was slightly acidic the length of the primary root of plants with a disrupted At...
متن کاملA plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis.
The plant hormone abscisic acid (ABA) regulates stomatal movement under drought stress, and this regulation requires hydrogen peroxide (H2O2). We isolated GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), which encodes a receptor-like kinase localized on the plasma membrane in Arabidopsis thaliana. ghr1 mutants were defective ABA and H2O2 induction of stomatal closure. Genetic analysis indicates ...
متن کاملAbscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.
Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997